CTF-Writeups

Writeups for the past CTF challenges

View on GitHub

Writeup For Challenges in Poseidon CTF 2020

CRYPTO

discrete log-:

crypto (908pts)

description:

I heard some cryptosystem uses discrete logarithm. It is hard problem, isn’t it? I encrypted the flag with 4095bit modulus…

Author : kiona

problem.py output.txt

Solution:

Let’s look at the source code:

#!/usr/bin/env python3

from Crypto.Util.number import isPrime, getPrime, getRandomRange, bytes_to_long
from flag import flag

def keygen():
    p = getPrime(1024)
    q = p**2 + (1<<256)
    while not(isPrime(q)):
        q += 2
    n = p**2 * q
    while True:
        g = getRandomRange(2, n-1)
        if pow(g, p-1, p**2) != 1:
            break
    return (g, n), p

def encrypt(pubkey, msg):
    g, n = pubkey
    msgint = bytes_to_long(msg)
    encint = pow(g, msgint, n)
    return encint

wfile = open('output.txt', 'w')

pubkey, privkey = keygen()

print(privkey)
wfile.write('g = ' + str(pubkey[0]) + '\n')
wfile.write('n = ' + str(pubkey[1]) + '\n')

encint = encrypt(pubkey, flag)
wfile.write('enc = ' + str(encint) + '\n')

wfile.close()

So we can see that we are given three parameters (n,g,enc) in the output.txt file. Let’s see how it’s generated :smile:

In keygen(), we can see that n is equal to p*p*q and p & q are primes. There is a weird checking with the randomly generated generator g pow(g,p-1,p**2) != 1, maybe becuase of the cryptosystem it uses. I had worked with Schmidt-Samoa Cryptosystem earlier and it was quite similar in terms of modulo used. So I looked in the same direction and then I found it was exactly the same implementation of Okamoto-Uchiyama Cryptosystem.

All the proofs are given in the wiki page (Thanks to wikipidea :) For donation visit this link

Let’s get p & q.

>> n = p*p*q
>> q = (p*p + 2**256 + x)
>> n = p*p*(p*p + 2**256 + x)
>> n = p**4 + (2**256+x)*p*p

There is a trick to calculate p easily because 2^256 + x is very small compared 1024 bit modulus prime. So we can ignore it and calculate p as fourth_root(n) Why? Let’s prove it: So we are stating that : p^4 < n < (p+1)^4.

>> (p+1)**4 - n
>> (p+1)**4 - (p**4 + (2**256+x)*p*p)
>> p**4 + 4*p**3 + 4*p**2 + p - p**4 - 2**256*p*p - x*p*p 
>> 4*p**3 -(2**256-4+x)*p*p +p
>> (4*p - 2**256 -4 + x )p*p +p > 0

P is a 1024 bit modulus so its greater than 2^256 and for x refer Prime gaps : which tells that x is around 1000 only.

So lets script it :

from gmpy2 import *
from Crypto.Util.number import isPrime, getPrime, getRandomRange, bytes_to_long, long_to_bytes
g = 172749132303451034825184289722866887646478207718904031630914096520683022158034517117605936723970812800902379716660696042889559048647206589145869496198395421965440272135852383965230458163451729744948637995163776071512309614027603968693250321092562108610034043037860044795655266224453184735452048413623769098671844195106558284409006269382544367448145088128499405797694142037310933061698125568790497068516077791616445318819525778890129259953967830407023305805724947609041398183006524760589480514375528363943261764527906775893795625189651746165941438248136930298545695110631212696683271254403308539994170329875688236599305478130030194371971383054083049610267982461416568688720562725217837462387935392946474596966349477680685726377666929540130924122398746591270899232208239961618302848348129375606841006687727574503519146164506867574157671109933022528435615415554171024171300585408907077259610240139419075684581512703943171162496513070572546968852202777002845137863414028314025114932581655385254082418111977242759980115915504202336380850329162861826132885827910210346708045087589916666711356848614195462267049823085141386868421005551877773672329046391854000523197388175515628464457551891476514779819019668102328395639607489673081022505099
n = 204964538005458094391574690738766104196067587947267165575341074475716043971842449550067337731195102944823593489101699510575531541895593939634478254160200896755891641047742120885540191258962212405226135805491196590351987106011483652123110409148411537235255207358696047015199616340882291357173918540392964501976492251077110794432722042202109934588262870543755493029748475008610896164870659893013085704495216717998116109896882952474884270785733861739050889113464275228554841649603978281963688294995328883256317404081735364738985601286409677647577052211093127231530844271726386293348738817021732679704754961436390654856963930636538653822714234978179695778198536592408645222590877027896792957778186555118729335564281356291031440583078132397563914801937048297147819254611598144027963328749607393168101280779708669908245620694587176737529113823312930871616550632035759346759393976128246210013752530912953330415598837661326422094379798718827988692760848583517436061574821754507293943235476923624688378441177770313101393581916112910947153305055575974237171438666919114843946573283829704010962833299593770650238349021406868347635157566404829030358844616367849771415905381318344903398551946493709551783771889575282972265629264217620138873678733
enc = 58749077215207190492371298843854826665007067693641554277597021927783439106518176607848876784025881251057880587477892585242567469682290542409002363284991521084199535617805983767364935247518813883871587009725229910084882524866335007624383374126379502610933045897762967063766174922757656816300993939273687091280630401460905159739072179134897626330594985795970230333335492872721173603390854317323095769925904629970032658376378937924244589208035572848434030889091930182042226202356340798415809817722086119981262671540923062830870681500341640178082497128371291359953884993700348396920219975667972939044100089402796215197615549948516999318565775626034391795498234335228509335613253342179818268681240653806015040771731154600343889814141382273506238199460016081871283682838719833841393528105371834961952754168257271394981634141286257602629174903644009990944563870674888760807045240859970974837258567236802649772719645362361127488126570702845624169598462415354350277654287009645871674305081755840523910495569765451437265785385267255452210836618705384598344351666486694835670072372776263570462639412759703397195350879217144135006968472391258993407007505079063659488976186871280542665310586453539153772026697145449262179967269376262891840972187

root = iroot(n,4)[0]

p = root
assert isPrime(p)
q = root*root + (1<<256)
while not(isPrime(q)):
	q+=2

assert p*p*q == n

h = pow(g,n,n)
c = (enc*h)%n

# So to recover m we need to take the discrete logarithm with base g^(p-1)
b = pow(g,p-1,p*p) - 1
assert b%p == 0
b= b//p

a = pow(c,p-1,p*p) - 1
assert a%p == 0
a= a//p


b_ = invert(b,p)

m = (a*b_)%p
print(f"Flag: {long_to_bytes(m).decode()}")

Flag:Poseidon{l064r17hm_fr0m_7h3_cycl1c_6r0up}